MECHANICAL ENGINEERING
 THERMODYNAMICS

(CBCGS- MAY-2019)

1.(a)What is the difference between a closed and open system?

OPEN SYSTEM	CLOSED SYSTEM
It is a thermodynamic system which can exchange mass and energy with the surrounding.	It is a thermodynamic system which can exchange energy but not matter with the surrounding.
Boundaries are open.	Boundaries are closed.
Mass of the system will vary.	Mass of the system is constant.
For example, the earth can be recognized as an open system. In this case, the earth is the system, and space is the surrounding. Sunlight can reach the earth surface and we can send rockets to space. Sunlight and rocket can be explained as energy and matter, respectively.	For example, if a warm cup of water is covered by placing a lid on the top of the cup, then steam cannot escape the system because of the lid. The gas molecules in the air also cannot enter the cup because of the lid. So, there is no exchange of matter.

1.(b) Define mechanical efficiency in case of reciprocating air compressor and state the methods used to improve isothermal efficiency?

Mechanical efficiency is defined as the ratio of indicated power (I.P) to brake power (B.P) of the compressor.

The power required to drive the compressor is called brake power or shaft power of the compressor.

$$
\eta_{\mathrm{m}}=\frac{I \cdot P}{B . P}
$$

Isothermal efficiency is defined as ratio of isothermal work output to the actual work done.

$$
\eta_{\mathrm{iso}}=\frac{\text { isolathermal work }}{\text { actual work }}
$$

Methods used to improve isothermal efficiency are:

- Improve the quality of the air intake.
- Match the air compressor controls.
- Improve system design.
- Consider compressed air needs.
- Minimize pressure drop.
- Maintain your compressor at regular interval of time.

1.(c) Define available energy, dead state and irreversibility.

In thermodynamics, available energy is the greatest amount of mechanical work that can be obtained from a system or body, with a given quantity of substance.

When the system is in equilibrium with the surroundings, it should be in pressure and temperature equilibrium with the surroundings i.e. p_{0} and t_{0}. Also, it should be in chemical equilibrium with the surroundings. The system should have zero velocity and minimum potential energy. This is called dead state.

The actual work done by the system is always less than the idealised reversible work and the difference between the two is called irreversibility.

$$
I=W_{\max }-W
$$

1.(d) Draw a simple schematic diagram of a thermal power plant with one reheater. Also represent this on T-S diagram.

1.(e) Write four Maxwell relation.
$+\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}$
$+\left(\frac{\partial T}{\partial P}\right)_{S}=+\left(\frac{\partial V}{\partial S}\right)_{P}$
$+\left(\frac{\partial S}{\partial V}\right)_{T}=+\left(\frac{\partial P}{\partial T}\right)_{V}$
$-\left(\frac{\partial S}{\partial P}\right)_{T}=+\left(\frac{\partial V}{\partial T}\right)_{P}$
2.(a) A fluid system contained in a piston cylinder machine, passes through a complete cycle of four processes. The sum of all heat transfer during the cycle is $\mathbf{- 1 7 0} \mathbf{k J}$. The system completes $\mathbf{1 0 0}$ cycles/min. Complete the following table showing the method for each process and compute the net rate of work output in KW.
(10)

Process	$\mathrm{Q}(\mathrm{KJ} / \mathrm{min})$	$\mathrm{W}(\mathrm{KJ} / \mathrm{min})$	$\Delta \mathrm{E}(\mathrm{KJ} / \mathrm{min})$
$1-2$	0	2170	----
$2-3$	21000	0	----
$3-4$	-2100	-----	-36600
$4-1$	-----	----	----

Let the processes 1-2, 2-3, 3-4, 4-1 be a-b, b-c, c-d, d-a respectively.
Process 1-2:
$\mathrm{Q}=\Delta E+\mathrm{W}$
$\therefore 0=\Delta E+2170=-2170 \mathrm{KJ} / \mathrm{min}$

Process 2-3:
$\mathrm{Q}=\Delta E+\mathrm{W}$
$\therefore 21000=\Delta E+0$
$\therefore \Delta E=21000 \mathrm{KJ} / \mathrm{min}$
Process 3-4:
$\mathrm{Q}=\Delta E+\mathrm{W}$
$\therefore-2100=-36600+W$
$\therefore \mathrm{W}=34500 \mathrm{KJ} / \mathrm{min}$
Process 4-1:
$\sum \mathrm{Q}=-170 \mathrm{~kJ}$
The system completes 100 cycles/min.
$\mathrm{Q}_{12}+\mathrm{Q}_{23}+\mathrm{Q}_{34}+\mathrm{Q}_{41}=-17000 \mathrm{~kJ} / \mathrm{min}$
$0+21000-2100+\mathrm{Q}_{41}=-17000$
$\therefore \mathrm{Q}_{41}=-35900 \mathrm{~kJ} / \mathrm{min}$.
Now $\oint d E=0$, since cyclic integral of any property is zero.
$\Delta \mathrm{E}_{12}+\Delta \mathrm{E}_{23}+\Delta \mathrm{E}_{34}+\Delta \mathrm{E}_{41}=0$
$-2170+21000-36600+\Delta \mathrm{E}_{41}=0$
$\therefore \Delta \mathrm{E}_{41}=17770 \mathrm{~kJ} / \mathrm{min}$
$\mathrm{W}_{41}=\mathrm{Q}_{41}-\Delta \mathrm{E}_{41}$
$=-35900-17770=-53670 \mathrm{~kJ} / \mathrm{min}$

Process	$\mathrm{Q}(\mathrm{KJ} / \mathrm{min})$	$\mathrm{W}(\mathrm{KJ} / \mathrm{min})$	$\Delta \mathrm{E}(\mathrm{KJ} / \mathrm{min})$
$1-2$	0	2170	-2170
$2-3$	21000	0	21000
$3-4$	-2100	34500	-36600
$4-1$	-35900	-53670	17770

2.(b) Derive and show that the efficiency of Brayton cycle depends on the pressure ratio.

Processes: -
1-2: isentropic compression
2-3: constant pressure energy addition
3-4: isentropic expansion

4-1: constant pressure energy rejection
Energy added, $\mathrm{Q}_{1}=\mathrm{mC}_{\mathrm{p}}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)$
Energy rejected, $\mathrm{Q}_{2}=\mathrm{mC}_{\mathrm{p}}\left(\mathrm{T}_{4}-\mathrm{T}_{1}\right)$
Thermal efficiency,
$\eta=\frac{Q 1-Q 2}{Q 1}=1-\frac{T 4-T 1}{T 3-T 2}$
$\eta=1-\frac{T 1\left(\left(\frac{T 4}{T 1}-1\right)\right)}{T 2\left(\left(\frac{T 3}{T 2}-1\right)\right)}$
The pressure ratio of the Brayton cycle, r_{p} is defined as,
$\mathrm{r}_{\mathrm{p}}=\frac{P_{1}}{P_{2}}$
Then,
$\frac{P_{3}}{P_{4}}=\frac{P_{2}}{P_{1}}$
The processes 1-2 and 3-4 are isentropic. Hence,
$\frac{T_{2}}{T_{1}}={\frac{P_{2}}{P_{1}}}^{(\gamma-1) / \gamma}$
$\frac{T_{3}}{T_{4}}={\frac{P_{3}}{P_{4}}}^{(\gamma-1) / \gamma}$
We get,
$\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{\mathrm{T}_{3}}{\mathrm{~T}_{4}}$
$\frac{\mathrm{T}_{4}}{\mathrm{~T}_{1}}=\frac{\mathrm{T}_{3}}{\mathrm{~T}_{2}}$
$\eta=1-\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=1-\left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)^{(\gamma-1) / \gamma}$
$=1-\left(\frac{1}{r_{p}}\right)^{(\gamma-1) / \gamma}$
3.(a) Air enters a compressor operating at steady state at a pressure of 1 bar, a temperature of $\mathbf{2 9 0} \mathrm{K}$ and a velocity of $6 \mathrm{~m} / \mathrm{s}$ through an inlet with an area of 0.1 m 2 . At exit the pressure is 7 bar , the temperature is 450 K and the velocity is $2 \mathrm{~m} / \mathrm{s}$. Heat transfer from the compressor to the surroundings occur at the rate of $180 \mathrm{KJ} / \mathrm{min}$. Employing the ideal gas model, calculate the power input to the compressor.

Apply the steady state energy balance between (1) and (2) gives
$\mathrm{h}_{2}-\mathrm{h}_{1}+\mathrm{g}\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)+\frac{1}{2}\left(\mathrm{~V}_{2}{ }^{2}-\mathrm{V}_{1}{ }^{2}\right)=\frac{Q}{m}-\frac{W}{m}$
The mass flow rate is given by:
$\mathrm{m}^{\circ}=\frac{A 1 . V 1}{v 1}$
The specific velocity can be found by:
$\mathrm{V}_{1}=\frac{\left(\frac{R}{M}\right) T 1}{p 1}=\frac{\left(\frac{8314}{28.97}\right) 290}{10^{5}} \quad=0.8324 \mathrm{~kg} / \mathrm{m}^{3}$
The mass flow rate is then:
$\mathrm{m}^{\circ}=\frac{A 1 . V 1}{v 1}=\frac{0.1(6)}{0.8324}=0.7209 \mathrm{~kg} / \mathrm{s}$

The change in air enthalpy can be obtained by:
$\mathrm{h}_{1}-\mathrm{h}_{2}=290.6 \mathrm{~kJ} / \mathrm{kg}-452.3 \mathrm{~kJ} / \mathrm{kg}=-161.7 \mathrm{~kJ} / \mathrm{kg}$
The change in kinetic energy is evaluated:
$\frac{1}{2}\left(\mathrm{~V}_{1}{ }^{2}-\mathrm{V}_{2}{ }^{2}\right)=0.5\left(6^{2}-2^{2}\right)=0.02 \mathrm{~kJ} / \mathrm{kg}$
The power input to the compressor is then
$\mathrm{W}_{\mathrm{s}}=\mathrm{Q}+\mathrm{m}\left(\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)+\frac{V_{1}^{2}-V_{2}^{2}}{2}\right)$
$\therefore \mathrm{W}_{\mathrm{s}}=-119.6 \mathrm{~kW}$
3.(b) Calculate the decrease in energy when 25 kg of water at $95^{\circ} \mathrm{C}$ mix with 35 kg of water at $35^{\circ} \mathrm{C}$, the pressure being taken as constant and the temperature of surroundings being $15^{\circ} \mathrm{C}$.
$\mathrm{m} 1=25 \mathrm{~kg}, \mathrm{~m} 2=35 \mathrm{~kg}, \mathrm{~T}_{1}=95+273=368 \mathrm{~K}, \mathrm{~T}_{2}=35+273=308 \mathrm{~K}$,
$\mathrm{T}_{0}=15+273=288 \mathrm{~K}$
$\mathrm{E}_{1}=\mathrm{mC}_{\mathrm{p}} \int_{T_{0}}^{T}\left(1-\frac{T_{0}}{T}\right) d T$
$=25 \times 4.2 \int_{288}^{368}\left(1-\frac{388}{T}\right) d T \quad=987.49 \mathrm{KJ}$
$\mathrm{E}_{2}=\mathrm{mC}_{\mathrm{p}} \int_{T_{0}}^{T}\left(1-\frac{T_{0}}{T}\right) d T$
$=25 \times 4.2 \int_{288}^{308}\left(1-\frac{308}{T}\right) d T \quad=97.59 \mathrm{KJ}$
$E=E_{1}+E_{2}=1085.08 \mathrm{KJ}$
After mixing, final temperature is: $25 \times 4.2(368-\mathrm{T})=35 \times 4.2(\mathrm{~T}-308)$
$\therefore \mathrm{T}=333 \mathrm{~K}$
Final available energy is

$$
\begin{aligned}
\mathrm{E}= & (25+35) \times 4.2\left((333-288)-288 \ln \left(\frac{333}{288}\right)\right. \\
& =803.27 \mathrm{KJ}
\end{aligned}
$$

\therefore decrease in energy $=281.80 \mathrm{KJ}$

4.(a) Explain the Carnot heat engine cycle executed by a) a stationary system and b) a steady flow system.

A heat engine cycle is a thermodynamic cycle in which there is a net heat transfer to the system and a net work transfer from the system. The heat engine may be in the form of a mass of gas confined in a cylinder and piston machine or a mass moving in a steady flow through a steam power plant.

In the cyclic heat engine, fig(a), heat Q_{1} is transferred to the system, work W_{E} is done by the system, work W_{C} is done upon the system and then heat Q_{2} is rejected from the system. The system is brought back to the initial state through all these four successive processes which constitute a heat engine cycle.In fig(b), heat Q_{1} is transferred from the furnace to the water in the boiler to form steam which then works on the turbine rotor to produce work W_{T}, then the steam is condensed in which an amount Q_{2} is rejected from the system, and finally work W_{p} is done on the system to pump it to the boiler. The system repeats the cycle.

The net heat transfer in a cycle to either of the heat engines
$\mathrm{Q}_{\mathrm{net}}=\mathrm{Q}_{1}-\mathrm{Q}_{2}$
And the net work transfer in a cycle is,
$W_{\text {net }}=W_{T}-W_{P}$
By the first law of thermodynamics, we have
$\Sigma \mathrm{Q}=\Sigma \mathrm{W}$
$\therefore \mathrm{Q}_{\text {net }}=\mathrm{W}_{\text {net }}$
$\therefore \mathrm{Q}_{1}-\mathrm{Q}_{2}=\mathrm{W}_{\mathrm{T}}-\mathrm{W}_{\mathrm{P}}$

The following figure shows a cyclic heat engine in the form of block diagram consisting of Boiler(B), Turbine(T), Condenser(C) and Pump(P), all four together constitute a heat engine.

The efficiency of Carnot heat engine cycle is given by

$$
\begin{aligned}
& \eta=\frac{W n e t}{Q 1} \\
& \therefore \eta=\frac{W \mathrm{t}-W p}{Q 1} \\
& \therefore \eta=\frac{Q 1-Q 2}{Q 1} \\
& \therefore \eta=1-\frac{Q 2}{Q 1}
\end{aligned}
$$

4.(b) Two reversible heat engines A and B are arranged in series, A rejecting heat directly to B . Engine A receives 200 kJ at a temperature of $421^{\circ} \mathrm{C}$ from a hot source, while engine B is in communication with a cold sink at a temperature of 4.4°. if the work output of A is twice that of B, find a) intermediate temperature between A and $B b$) efficiency of each engine and c) the heat rejected to the cold sink.

Solution:
From Thermodynamic temperature scale we know that,

$$
\begin{aligned}
& \frac{Q_{1}}{Q_{2}}=\frac{T_{1}}{T_{2}} ; \quad \frac{Q_{2}}{Q_{3}}=\frac{T_{2}}{T_{3}} \\
& \text { But } \frac{Q_{1}}{Q_{3}}=\frac{Q_{1}}{Q_{2}} \times \frac{Q_{2}}{Q_{3}}=\frac{T_{1}}{T_{3}}
\end{aligned}
$$

$\rightarrow Q_{3}=79.94 \mathrm{~kJ}$
Since, $W_{A}=2 W_{B}$
$Q_{1}-Q_{2}=2\left(Q_{2}-Q_{3}\right) \quad \rightarrow \mathbf{Q}_{2}=119.96 \mathbf{k J}$

$$
\begin{gathered}
\frac{Q_{1}}{Q_{2}}=\frac{T_{1}}{T_{2}} \rightarrow \mathrm{~T}_{2}=143.26{ }^{\circ} \mathrm{C} \\
\boldsymbol{\eta}_{\boldsymbol{A}}=\frac{\boldsymbol{W}_{A}}{Q_{1}}=\mathbf{4 0} \% \text { where } \mathrm{W}_{\mathrm{A}}=\mathrm{Q}_{1}-\mathrm{Q}_{2} \\
\boldsymbol{\eta}_{\boldsymbol{B}}=\frac{\boldsymbol{W}_{B}}{Q_{2}}=\mathbf{3 3 . 3 6 \%} \text { where } \mathrm{W}_{\mathrm{B}}=\mathrm{Q}_{2}-\mathrm{Q}_{3}
\end{gathered}
$$

5.(a) In an IC engine operating on dual cycle, the temperature of the working fluid(air) at the beginning of the compression is $27^{\circ} \mathrm{C}$. The ratio of the maximum and minimum pressures of the cycle is 70 and compression ratio is 15 . The amounts of heat added at constant volume and constant pressure are equal. Compute the air standard thermal efficiency of the cycle.

$\mathrm{T} 1=27+273=300 \mathrm{~K}$
$\frac{P 3}{P 1}=70$
$\frac{V 1}{V 2}=\frac{V 1}{V 3}=15$
Consider adiabatic process 1-2:
$\frac{T 2}{T 1}=\frac{V 1}{V 2}^{\gamma-1}=15^{1.4-1}=2.954$
$\therefore \mathrm{T}_{2}=300 \times 2.954=886.2 \mathrm{~K}$
$\frac{P 2}{P 1}=\frac{V 1^{\gamma}}{V 2}=15^{1.4}$
$\therefore \mathrm{P}_{2}=44.3 \mathrm{P}_{1}$

Constant pressure process 2-3:
$\frac{P 2}{T 2}=\frac{P 3}{T 3}$
$\therefore \mathrm{T}_{3}=\frac{P 3}{P 2} \mathrm{xT} 2 \quad \therefore \mathrm{~T}_{3}=886.2 \times \frac{70 P 1}{44.3 P 1} \quad \therefore \mathrm{~T}_{3}=1400 \mathrm{~K}$
Also, Heat added at constant volume $=$ Heat added at constant pressure
$\mathrm{C}_{\mathrm{v}}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)=\mathrm{C}_{\mathrm{p}}\left(\mathrm{T}_{4}-\mathrm{T}_{3}\right)$
$\therefore \mathrm{T}_{3}-\mathrm{T}_{2}=\gamma\left(\mathrm{T}_{4}-\mathrm{T}_{3}\right)$
$\therefore \mathrm{T}_{4}=\mathrm{T}_{3}+\frac{\mathrm{T}_{3}-\mathrm{T}_{2}}{\gamma}=1400+\frac{1400-886.2}{1.4}=1767 \mathrm{~K}$
Constant volume process 3-4:
$\frac{V 3}{T 3}=\frac{V 4}{T 4} \Rightarrow \frac{V 4}{V 3}=\frac{T 4}{T 3}=\frac{1767}{1400}=1.26$
Also, $\frac{V 4}{V 3}=\frac{V 4}{\left(\frac{V 1}{15}\right)}=1.26$ or $\mathrm{V}_{4}=0.084 \mathrm{~V}_{1}$
Also, $\mathrm{V}_{5}=\mathrm{V}_{1}$
Adiabatic expansion process 4-5:
$\frac{T 4}{T 5}=\frac{V 5}{V 4}^{\gamma-1}=\frac{V 1}{0.084 V 1}^{1.4-1}=2.69$
$\therefore \mathrm{T}_{5}=\frac{T 4}{2.69}=\frac{1767}{2.69}=656.9 \mathrm{~K}$
$\eta_{\text {air-standard }}=\frac{\text { Work done }}{\text { Heat Supplied }}=\frac{\text { Heat supplied-Heat rejected }}{\text { Heat supplied }}$
$=1-\frac{\text { Heat rejected }}{\text { Heat supplied }}$
$=1-\frac{C p\left(T_{5}-T_{1}\right)}{\operatorname{Cv}\left(T_{3}-T_{2}\right)+C p\left(T_{4}-T_{3}\right)}$
$=1-\frac{\left(T_{5}-T_{1}\right)}{\left(T_{3}-T_{2}\right)+\gamma\left(T_{4}-T_{3}\right)}$
$=1-\frac{(656.9-300)}{(1400-886.2)+1.4(1767-1400)}$
$\therefore \eta=0.653$ or 65.3 \%
5.(b) Air initially occupying $1 \mathrm{~m}^{3}$ at 1.5 bar, $20^{\circ} \mathrm{C}$ undergoes an internally reversible compression for which $\mathrm{PV}^{\mathrm{n}}=$ constant to a final state where the
pressure is 6 bar and temperature is $120^{\circ} \mathrm{C}$. Determine i) the value of n ii) the work and heat transfer iii) change in entropy.
$\mathrm{V}_{1}=1 \mathrm{~m}^{3}, \mathrm{P}_{1}=1.5 \mathrm{bar}=1.5 \times 10^{5} \mathrm{~Pa} \quad \mathrm{~V}_{2}=?, \mathrm{P}_{2}=6 \mathrm{x} 10^{5} \mathrm{~Pa}$
$\mathrm{T}_{1}=293 \mathrm{~K}$
$\mathrm{T}_{2}=393 \mathrm{~K}$
$\frac{P 1 . V 1}{T 1}=\frac{P 2 . V 2}{T 2}$
$\therefore \mathrm{V}_{2}=0.335 \mathrm{~m}^{3}$
$\mathrm{P}_{1} \mathrm{~V}_{1}{ }^{\mathrm{n}}=\mathrm{P}_{2} \mathrm{~V}_{2^{\mathrm{n}}}$
$\therefore \mathrm{n}=1.267$
$\mathrm{W}=\frac{P 2 \mathrm{~V} 2-P 1 \mathrm{~V} 1}{1-n}=1.9 \times 10^{5} \mathrm{~J}=190 \mathrm{KJ}$
$\Delta U=m C v \Delta T$
$\mathrm{PV}=\mathrm{mRT}$
$\therefore \mathrm{m}=1.78 \mathrm{~kg}$
$\Delta U=1.78 \times 0.718(120-20)=128 \mathrm{KJ}$
From first law,
$Q=\Delta U+W$
$\therefore \mathrm{Q}=318 \mathrm{KJ}$
6.(a) In a rankine cycle the stream at the inlet to the turbine is at 100 bar and 500 C . If the exhaust pressure is 0.5 bar, determine the pump work, turbine work, condenser heat flow and Rankine efficiency.
$\mathrm{P}_{1}=100 \mathrm{bar}, \mathrm{P}_{2}=0.5 \mathrm{bar}$
Since, $\mathrm{T}_{\text {sup }}=500^{\circ} \mathrm{C}$ it is a condition of supersaturated steam.
\therefore At 100 bar, $\mathrm{T}_{\text {sat }}=310.9 \mathrm{C}$
$\mathrm{h}_{1}=\mathrm{h}_{\mathrm{g}}+\mathrm{C}_{\mathrm{pv}}\left(\mathrm{T}_{\text {sup }}-\mathrm{T}_{\text {sat }}\right)=2727+2.1(500-31.09)=3124.6 \mathrm{KJ} / \mathrm{kg}$
$\mathrm{S}_{1}=\mathrm{S}_{\mathrm{g}}+\mathrm{C}_{\mathrm{pv}} \log \left(\frac{T s u p}{T s a t}\right)=5.62+2.1 \log \frac{773}{583.9} \quad=6.20 \mathrm{KJ} / \mathrm{kg} \mathrm{K}$
To find dryness fraction,
$\mathrm{S} 1=\mathrm{S} 2=\mathrm{S}_{\mathrm{f}}+\mathrm{xS} \mathrm{S}_{\mathrm{fg}}=6.20$
$\therefore \mathrm{x}_{2}=0.78$
$\mathrm{H}_{2}=2138.7 \mathrm{KJ} / \mathrm{kg}$
$\mathrm{h}_{3}=\mathrm{h}_{\mathrm{f}}=340.5 \mathrm{KJ} / \mathrm{kg}$
Pump Work $\mathrm{W}_{\mathrm{p}}=\frac{100-0.5}{10}=10 \mathrm{KJ} / \mathrm{kg}$
$\therefore \mathrm{h}_{4}=\mathrm{h}_{3}+\mathrm{W}_{\mathrm{p}}=340.5+10=350.5 \mathrm{KJ} / \mathrm{kg}$
Turbine Work, $\mathrm{W}_{\mathrm{t}}=\mathrm{h}_{1}-\mathrm{h}_{2}=985.9 \mathrm{KJ} / \mathrm{kg}$
Turbine shaft work $=\mathrm{W}_{\mathrm{t}}-\mathrm{W}_{\mathrm{p}}=975.9 \mathrm{KJ} / \mathrm{kg}$
Condensor heat flow, $\mathrm{qr}=\mathrm{h}_{2}-\mathrm{h}_{3}=1798.2 \mathrm{KJ} / \mathrm{kg}$
$\eta=\frac{W s}{q 1}=\frac{975.1}{2774.1}=35.1 \%$
6.(b) What is meant by complete and perfect intercooling in case of multistage air compressor? What is the effect of multi staging over the volumetric efficiency of reciprocating air compressor?

For a given condensation temperature, the lower the evaporator temperature, the higher the compressor pressure ratio. For a reciprocating compressor, a high pressure ratio across a single stage means low volumetric efficiency. Also, with dry compression the high pressure ratio results in high compressor discharge temperature which may damage the refrigerant. To reduce the work of compression and improve the COP, multistage compression with intercooling may be adopted. Since the intercooler temperature may be below the temperature of available cooling water used for the condenser, the refrigerant itself may be used as the intercooling medium.

For minimum work, the intercooler pressure p_{i} is the geometric mean of the evaporator and condenser pressures, p_{1} and p_{2} or
$\mathrm{p}_{\mathrm{i}}=\sqrt{ }\left(p_{1} \cdot p_{2}\right)$
By making an energy balance of the direct contact heat exchanger,
$\mathrm{m}_{2} \mathrm{~h}_{2}+\mathrm{m}_{1} \mathrm{~h}_{6}=\mathrm{m}_{2} \mathrm{~h}_{7}+\mathrm{m}_{1} \mathrm{~h}_{3}$
$\therefore \frac{\mathrm{m} 1}{\mathrm{~m} 2}=\frac{\mathrm{h} 2-\mathrm{h} 7}{\mathrm{~h} 3-\mathrm{h} 6}$
The desored refrigerating effect determines the flow rate in the low pressure loop, m_{2}, as given below
$\mathrm{m}_{2}\left(\mathrm{~h}_{1}-\mathrm{hg}_{\mathrm{g}}\right)=\frac{14000}{3600} \times \mathrm{P}$
where P is the capacity, in tonnes of refrigeration.
$\therefore \mathrm{m}_{2}=\frac{3.89 P}{h_{1}-h_{g}} \mathrm{~kg} / \mathrm{s}$

Multi-stage compression increases the volumetric efficiency and reduces the power consumption, the power input being a minimum if the total work is divided equally between the stages.

